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INTERSECTION NUMBERS AND THE COUNTING OF LATTICE

POINTS

ZIFU SONG

Abstract. Originating from the study of the intersection of two plane curves, intersection
theory has developed into a prominent field in modern algebraic geometry. The intersection
theory of the moduli space of curves was initiated by Mumford in the 1980s and attracted a
large amount of attention due to Witten’s discovery of its connections to integrable systems,
as well as its many applications in string theory and enumerative geometry.

The main subject of this paper is the expression of descendent integrals on moduli spaces
of curves as lattice point counts of a polytope. This relation was first established by Afandi
through Ehrhart theory in discrete geometry, as well as a kind of polynomiality property of
descendent integrals due to Liu-Xu.

Our work strengthens Afandi’s theorem by dropping a genus shift in the assertion and,
at the same time, by presenting a more succinct statement. Our proof is an induction using
the DVV formula. The main technical difficulty lies in proving an inequality by using the
Leibniz rule for finite differences and using Eynard-Orantin theory to show the positivity of
normalized 3-point functions.
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1. Introduction

The roots of intersection theory arise from the classical problem of determining the in-
tersection of two plane curves, or more generally, of multiple algebraic hypersurfaces in n-
dimensional space. Isaac Newton investigated this problem in his Principia. It was later
formulated as the celebrated Bézout’s theorem.

Theorem 1.1 (Bézout’s theorem). Let C1 and C2 be two projective plane curves of degrees
m and n, defined over an algebraically closed field F . Then they intersect at exactly mn
points, counting multiplicities.

Plücker’s notion of the class of a curve was an application of Bézout’s theorem. The class
of a plane curve C is defined as the number of tangents to C through a point Q. Plücker
gave an explicit formula for the class of plane curves. Let F (x, y, z) be the homogeneous
polynomial defining C, pick Q = (a : b : c). Define the polar curve CQ by:

FQ(x, y, z) = a
∂F

∂x
+ b

∂F

∂y
+ c

∂F

∂z

This definition ensures that a nonsingular point on C is on CQ if and only if the tangent line
to C at that point goes through Q. On the other hand, since partial derivatives vanish at
singular points, all singular points of C are on CQ. The number of points where C and CQ

intersect, which can be expressed in terms of degree using Bézout’s theorem, is a combination
of the class of C and the singular points of C, explicitly

#C ∩ CQ = degC degCQ = n(n− 1) = class(C) + #singular points

where n is the degree of C.
Plücker’s first formula reveals that ordinary nodes contribute 2 intersection points (with

intersection multiplicity 2), and ordinary cusps contribute 3 points (with intersection multi-
plicity 3).

n(n− 1) = class(C) + 2δ + 3κ

where n is the degree of C, δ is the number of ordinary nodes and κ is the number of ordinary
cusps.

In 1847 Salmon obtained an analogous formula for surfaces. Let S ⊂ P3 be a surface, then
the degree of the dual surface S∨ (now called the second class) is the number of points P
on S such that the tangent plane at P contains a general line l. However, different from the
case of plane curves, there is the problem of excess intersection when analyzing contributions
of singular points. Specifically, when the surface S is singular along a curve C, Salmon
calculated the contributions when C is a line, a double line and general curves.

On the other hand, Chasles, de Jonquières and many mathematicians avoided the issue of
excess intersections by calculating intersections only on certain special spaces.

Later, Severi developed a procedure for calculating intersection multiplicity, which was
corrected and completed by Lazarsfeld and Macaulay.

The moduli space of curves was first studied by Riemann. Nowadays, it lies at the center
of the confluence of algebraic geometry, number theory and mathematical physics. In the
past few decades the subject has also gained importance with input from string theory.

In this paper, we will touch upon only one aspect of moduli space of curves – intersection
theory – and explore its connection with Ehrhart theory.

In the early 1990s, Witten’s conjecture [17], first solved by Kontsevich [11], invigorated the
study of intersection theory on moduli spaces by connecting it with integrable systems. The
Witten-Kontsevich theorem enabled intersection numbers involving ψ classes, or descendant
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integrals, to be calculated via a recursion formula. This is the starting point of modern
enumerative geometry or Gromov-Witten theory, which culminated in the solution of the
long-standing enumeration problem of rational curves on Calabi-Yau manifolds, by Lian-Liu-
Yau [12] and Givental [8] independently.

Recently, Afandi [1] established a very interesting connection between intersection numbers
on the moduli space of curves and Ehrhart theory – the polynomiality occurs simultaneously
in intersection theory and counting lattice points in a polytope. For more related works, see
[9, 10, 14, 18].

In this paper, we briefly review the Witten-Kontsevich theorem as well as Ehrhart theory.
After that, we prove a strengthening of Afandi’s theorem [1] in Sections 4-6.

2. Intersection numbers and the Witten-Kontsevich theorem

LetMg,n be the moduli space of stable n-pointed genus g complex algebraic curves. Denote
by π the morphism that forgets the last marked point

π : Mg,n+1 −→ Mg,n.

Denote by σ1, . . . , σn the canonical sections of π. Let ωπ be the relative dualizing sheaf.
There are three families of tautological classes on Mg,n.

ψi = c1(σ
∗
i (ωπ)), 1 ≤ i ≤ n

κi = π∗(ψ
i+1
n+1)

λk = ck(E), 1 ≤ k ≤ g,

where E = π∗(ωπ) is called the Hodge bundle.
Intuitively, ψi is the first Chern class of the line bundle whose fiber is the cotangent space

of the curve at the i-th marked point and the fiber of E is the space of holomorphic one-forms
on the algebraic curve.

We adopt Witten’s notation for intersection numbers:

⟨τd1 · · · τdnκa1 · · ·κam | λk11 · · ·λkgg ⟩ :=
∫
Mg,n

ψd1
1 · · ·ψdn

n κa1 · · ·κamλ
k1
1 · · ·λkgg .

These are also called Hodge integrals, which are rational numbers, and their total degrees
should add up to dimMg,n = 3g − 3 + n.

Intersection numbers of pure ψ classes ⟨τd1 · · · τdn⟩ are often called descendent integrals.
Intersection numbers of pure κ classes ⟨κa1 · · ·κam⟩ are called higher Weil-Petersson volumes.

Integrals of κ1 class ⟨κ3g−3+n
1 ⟩g,n are the classical Weil-Petersson volumes.

The κ classes on Mg was first introduced by Mumford [16] and their generalization to

Mg,n was due to Arbarello-Cornalba [2].

2.1. Witten-Kontsevich theorem. In 1990, Witten [17] conjectured that the generating
function of descendent integrals is governed by the KdV hierarchy. Witten’s conjecture was
first proved by Kontsevich [11]. Kontsevich’s proof used a novel combinatorial description
of moduli spaces and Feynman diagram techniques. Now we have many different proofs of
the Witten-Kontsevich theorem due to Chen-Li-Liu, Kazarian-Lando, Kim-Liu, Okounkov-
Pandharipande, Mirzakhani.
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Witten’s motivation comes from two seemingly unrelated mathematical models that both
describe the physical theory of two-dimensional gravity: the counting of triangulations of
surfaces via matrix integrals and the intersection theory of Mg,n. The partition function of
the first model is known to obey the KdV hierarchy.

The KdV hierarchy is a family of differential equations labeled by n ≥ 1,

∂U

∂tn
=
∂Rn+1

∂t0
,

where Rn are Gelfand-Dikii differential polynomials in U, ∂U/∂t0, ∂
2U/∂t20, . . . , defined re-

cursively by

R1 = U,
∂Rn+1

∂t0
=

1

2n+ 1

(
∂U

∂t0
Rn + 2U

∂Rn

∂t0
+

1

4

∂3Rn

∂t30

)
.

The first few terms are given by

R2 =
1

2
U2 +

1

12

∂2U

∂t20
,

R3 =
1

6
U3 +

U

12

∂3U

∂t30
+

1

24
(
∂U

∂t0
)2 +

1

240

∂4U

∂t40
,

...

The Witten-Kontsevich theorem asserts that the generating function

(1) F (t0, t1, . . .) =
∑
g

∑
n

⟨
∞∏
i=0

τni
i ⟩g

∞∏
i=0

tni
i

ni!

is a τ -function for the KdV hierarchy, i.e. U = ∂2F/∂t20 is a solution to all equations in the
KdV hierarchy. The first equation in the KdV hierarchy is the classical KdV equation

∂U

∂t1
= U

∂U

∂t0
+

1

12

∂3U

∂t30
.

In addition, F obey the following string and dilaton equations

∂F

∂t0
=
t20
2
+

∞∑
i=0

ti+1
∂F

∂ti

∂F

∂t1
=

1

24
+

∞∑
i=0

2i+ 1

3
ti
∂F

∂ti
.

2.2. Virasoro constraints. The Witten-Kontsevich theorem has an important reformula-
tion in terms of the Virasoro constraints.

Define a family of differential operators Lk for k ≥ −1 by

Lk = −1

2
(2k + 3)!!

∂

∂tk+1
+

1

2

∞∑
j=0

(2(j + k) + 1)!!

(2j − 1)!!
tj

∂

∂tj+k

+
1

4

∑
d1+d2=k−1

(2d1 + 1)!!(2d2 + 1)!!
∂2

∂td1∂td2
+
δk,−1t

2
0

4
+
δk,0
48

,

These operators satisfy the Virasoro relations

[Ln, Lm] = (n−m)Ln+m.
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Dijkgraaf, Verlinde, and Verlinde [4] proved that the KdV form of Witten’s conjecture is
equivalent to the following Virasoro constraints.

Proposition 2.1. (DVV formula) Let F be the generating function of descendent integrals
defined in (1). We have Lk(expF ) = 0 for k ≥ −1. More explicitly,

⟨τk+1τd1 · · · τdn⟩g =
1

(2k + 3)!!

 n∑
j=1

(2k + 2dj + 1)!!

(2dj − 1)!!
⟨τd1 · · · τdj+k · · · τdn⟩g

+
1

2

∑
r+s=k−1

(2r + 1)!!(2s+ 1)!!⟨τrτsτd1 · · · τdn⟩g−1

+
1

2

∑
r+s=k−1

(2r + 1)!!(2s+ 1)!!
∑

n=I
∐

J

⟨τr
∏
i∈I

τdi⟩g′⟨τs
∏
i∈J

τdi⟩g−g′

 .
The special cases of the DVV formula when k = −1 and k = 0 are just the string and the

dilaton equation respectively.

The string equation: ⟨τ0τd1 . . . τdn⟩g =
n∑

i=1

⟨τd1 . . . τdi−1 . . . τdn⟩g

The dilaton equation: ⟨τ1τd1 . . . τdn⟩g = (2g − 2 + n) ⟨τd1 . . . τdn⟩g
Here is the closed formula for one-point intersection numbers:

⟨τ3g−2⟩g =
1

24gg!

When g = 0, there is the well-known identity:

⟨τd1 · · · τdn⟩0 =
(

n− 3

d1, . . . , dn

)
.

Example 2.2. ⟨τ1⟩1 =
1

24

Example 2.3. ⟨τ2τ3τ2τ0⟩g = ⟨τ1τ3τ2⟩g + ⟨τ2τ2τ2⟩g + ⟨τ2τ3τ1⟩g = ⟨τ2τ2τ2⟩g + 4g⟨τ2τ3⟩g
Example 2.4.

⟨τ4τ5τ20 ⟩g = ⟨τ3τ5τ0⟩g + ⟨τ4τ4τ0⟩g
= ⟨τ2τ5⟩g + ⟨τ3τ4⟩g + 2⟨τ3τ4⟩g

2.3. Hodge Integrals and Faber’s algorithm. Hodge integrals are intersection numbers
involving ψ, κ and λ classes on Mg,n.

Faber’s algorithm [7] reduces the calculation of general Hodge integrals to those with pure
ψ classes.

The ELSV formula [5] relates single Hurwitz numbers to Hodge integrals.

Theorem 2.5 (ELSV formula). Let n = l(µ) and r = 2g − 2 + |µ|+ n. Then

Hg,µ = r!

n∏
i=1

(
µµi
i

µi!

)∫
Mg,n

1− λ1 + · · ·+ (−1)gλg
(1− µ1ψ1) · · · (1− µnψn)

,
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The ELSV formula, as well as many Hodge integral identities can be derived from the
Mariño-Vafa formula [13].

As is well-known to experts, intersection numbers involving mixed ψ and κ classes can be
reduced to integrals of pure κ classes or pure ψ classes by using the projection formula. For
example, the following formula reducing ψ class one at a time can be found in [15].

Proposition 2.6. Let dn ≥ 1, b = (b1, b2, . . . ) ∈ N∞ where N∞ is the semigroup of se-
quences with nonnegative integers bi and bi = 0 for sufficiently large i. Define

κ(b) ≜
∏
i≥1

κbii

Then

⟨τd1 · · · τdnκ(b)⟩g =
∑

L+L′=b

(
b

L

)
⟨τd1 · · · τdn−1κ(L

′)κ|L|+dn−1⟩g.

2.4. An integer-valued polynomial. In [14], Liu-Xu discovered genus polynomiality of
intersection numbers.

Theorem 2.7 ([14, Theorem 4.1]). For any fixed set d = (d1, . . . , dn) of nonnegative integers
with |d| := d1 + · · ·+ dn, the following function

(2) Pd1,...,dn(g) =
⟨τd1 · · · τdnτ3g−2+n−|d|⟩g

⟨τ3g−2⟩g

n∏
i=1

(2di + 1)!!

is a polynomial in g with highest-degree term 6|d|g|d|. Moreover, Pd1,...,dn(g) is integer-valued,
i.e., Pd1,...,dn(g) ∈ Z whenever g ∈ Z.

These polynomials Pd1,...,dn(g) are determined uniquely by the initial values P∅(g) = P0,...,0(g) =
1 and the recursive relation

(3) Pd1,...,dn(g) =
n∑

j=2

(2dj + 1)Pd2,...,dj+d1−1,...,dn(g)

+

d1∏
j=1

(6g + 2n− 2|d|+ 2j − 5)Pd2,...,dn(g) + 12g
∑

r+s=d1−2

Pr,s,d2,...,dn(g − 1)

+
∑

r+s=d1−2
I
∐

J={2,··· ,n}

24g
′⟨τr

∏
i∈I

τdi⟩
w
g′

g′∏
j=1

(g + 1− j)Ps,dJ (g − g′),

where in the last term we used the normalized tau function

⟨τd1 · · · τdn⟩wg :=
n∏

i=1

(2di + 1)!!⟨τd1 · · · τdn⟩g.

3. Ehrhart theory and Afandi’s work

3.1. Ehrhart theory. For background and important theorems in Ehrhart theory, we follow
the book [3].
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Let P ⊂ Rd be an integral convex d-polytope with vertices v1, . . . , vn ∈ Zd, then

P = Conv(v1, . . . , vn) ⊂ Rd.

For t ∈ Z>0, tP denotes the tth dilate of the polytope P ⊂ Rd

tP = Conv(tv1, . . . , tvn) = {tp : p ∈ P}.
The lattice-point enumerator for the tth dilate of P ⊂ Rd is defined as

LP(t) := #(tP ∩ Zd).

The fundamental theorem concerning lattice-point enumeration, named in honor of Eugène
Ehrhart, is the following.

Theorem 3.1 (Ehrhart’s Theorem). If P is an integral convex d-polytope, then LP(t) is a
rational polynomial in t of degree d.

LP(t) is called the Ehrhart polynomial of P.

Following [1], we define the notion of polytopal complexes and the f∗-vector of an integral
d-polytope.

Definition 3.2. A polytopal complex K is a finite collection of polytopes in Rd satisfying the
following three properties:

(1) the empty polytope is in K,
(2) if P ∈ K, then all the faces f of P are also in K,
(3) the intersection P ∩Q of two polytopes P,Q ∈ K is a face of both P and Q.

The elements of K are called the faces of K. The dimension of K is the largest dimension of
the faces of K.

Definition 3.3. Let P be an integral convex d-polytope. The f∗-vector of P is the unique
integer tuple (f∗0 , . . . , f

∗
d ) ∈ Zd+1 such that

LP(t) =
d∑

k=0

f∗k

(
t− 1

k

)
A generalization of the integral d-polytope is the open d-polytope; it is the relative interior

of an integral d-polytope. We also generalize polytopal complexes.

Definition 3.4. An integral partial polytopal complex K is a finite disjoint union of open
integral polytopes. The elements of K are called the faces of K. The dimension of K is the
largest dimension of the faces of K. The Ehrhart polynomial of K, denoted LK(g), is the sum
of the Ehrhart polynomials of each face of K.

Then it makes sense to talk about the f∗-vector of an integral partial polytopal complex.

Theorem 3.5. For a partial polytopal complex K of dimension d, we have the decomposition
of its Ehrhart polynomial

LK(t) =

d∑
i=0

f∗i

(
t− 1

i

)
we call (f∗0 , . . . , f

∗
d ) the f

∗-vector of K.

These tools are sufficient for us to introduce the following central theorem due to Breuer.
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Theorem 3.6 (Breuer). An integer-valued polynomial P (g) of degree d is the Ehrhart poly-
nomial of an integral partial polytopal complex if and only if the f∗-vector (f∗0 , . . . , f

∗
d ) of

P (g) is nonnegative i.e. f∗i ≥ 0 for all 0 ≤ i ≤ d.

For simplicity, if an integer-valued polynomial P (g) satisfies the condition of the above
theorem, we will call it an Ehrhart polynomial.

3.2. Afandi’s theorem. The main theorem proved by Afandi is the following.

Theorem 3.7 (Afandi [1]). For any fixed set d = (d1, · · · , dn) of nonnegative integers with
n ≥ 1. Define

C(d) :=
n∏

i=1

(2di + 1)!!,

m(d) = m :=

⌈
2− n+ |d|

3

⌉
− 1.

Then there exists an integral partial polytopal complex Pd with dimension |d| and volume

vol (Pd) = 6|d| such that

24g+m(g+m)!C(d)

∫
Mg+m,n+1

ψd1
1 . . . ψdn

n ψ
3(g+m)−2+n−|d|
n+1 = #{integer lattice points in gPd}

where gPd is the gth dilate of Pd.

Afandi’s theorem can be rephrased as that Pd1,··· ,dn(g +m), defined in (2), is an Ehrhart
polynomial. The shift m(d) is indispensable in Afandi’s inductive proof using the DVV
formula. One may naturally ask whether this shift of genus could be dropped in Afandi’s
theorem. The answer is affirmative. This is what we are going to show in the next section.

Note that we have the string and dilaton equations for Pd1,...,dn(g) when d1 = 0 or 1.

P0,d2,...,dn(g) =
n∑

j=2

(2dj + 1)Pd2,...,dj−1,...,dn(g) + Pd2,...,dn(g),

P1,d2,...,dn(g) = (6g + 3n− 6)Pd2,...,dn(g).

If we assume di ≥ 1 for all 1 ≤ i ≤ n, then m(d) ≥ 0. Note that if f(g) is an Ehrhart
polynomial, then so is f(g + 1). Therefore dropping the shift m(d) is a strengthening of
Afandi’s theorem.

4. Improvement of Afandi’s theorem

For the polynomial Pd1,··· ,dn(g), we will treat the cases n = 1 and n ≥ 2 separately.
The following formula of Pd(g) was derived from 2-point function due to Dijkgraaf.

Lemma 4.1 ([14, Corollary 4.5]). Let d ≥ 0 be a nonnegative integer. Then

(4)
Pd(g)

(2d+ 1)!!
=

⌊ d−1
3

⌋∑
i=0

∑
k

12kk!(k + i)!

i!(2k + 1)!

(
k − 1

d− 3i− k

)(
g

k + i

)
+ (−1)d mod 3

(
g − 1

⌊d3⌋

)
,

where the summation range of k is max(⌈d−3i+1
2 ⌉, 1) ≤ k ≤ d− 3i.
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Theorem 4.2. Let d ≥ 0 be a nonnegative integer. Then Pd(g) is an Ehrhart polynomial.
Namely, if we write

Pd(g) =

d∑
i=0

ai

(
g − 1

i

)
,

then ai ≥ 0 for all 0 ≤ i ≤ d.

Proof. From Lemma 4.1, the negative contribution comes from the last term of (4). So we
only need to check that when d = 3m + 1, we have am ≥ 0. Note that the contribution to(
g−1
m

)
of the first term in the right-hand side of (4) only occurs when i = m and k = 1, so we

have

am = (6m+ 3)!!

(
12(m+ 1)!

m! · 6
− 1

)
= (2m+ 1)(6m+ 3)!! > 0.

The statement is proven. □

Theorem 4.3. For any fixed set d = (d1, · · · , dn) of nonnegative integers with n ≥ 2, the
polynomial Pd1,··· ,dn(g − 1) is an Ehrhart polynomial. Namely, if we write

(5) Pd1,··· ,dn(g) =

|d|∑
k=0

Id1,··· ,dn(k)

(
g

k

)
,

then Id1,··· ,dn(k) ≥ 0 for all 0 ≤ k ≤ |d|.

From (3), we have a recursive formula for the coefficients Id1,··· ,dn(k) (see [14, Page 44]).

(6) Id1,...,dn(k) =
n∑

j=2

(2dj + 1)Id2,...,dj+d1−1,...,dn(k)

+
k∑

i=max(0,k−d1)

ck−i(d1, 2n− 2|d|+ 6i− 5)

(
k

i

)
Id2,...,dn(i)

+ 12k
∑

r+s=d1−2

Ir,s,d2,...,dn(k − 1) +
∑

r+s=d1−2
I
∐

J={2,··· ,n}

24g
′⟨τr

∏
i∈I

τdi⟩
w
g′

k!

(k − g′)!
Is,dJ (k − g′),

where ct(d1,m), 0 ≤ t ≤ d1 are the coefficients of

d1∏
j=1

(6x+m+ 2j) = c0 + c1x+ c2

(
x

2

)
+ · · ·+ cd1−1

(
x

d1 − 1

)
+ cd1

(
x

d1

)
.

In order to prove Theorem 4.3, we need some preparations.

Lemma 4.4 ([14, Corollary 4.2]). Let d = (d1, · · · , dn) with di ≥ 0.

(1) A positive integer k ≥ 1 is a root of Pd1,...,dn(g) if and only if k < |d|−n+2
3 .

(2) 0 is a root of Pd1,...,dn(g) if and only if 2 ≤ n ≤ |d|+ 1.

Lemma 4.5. Denote by Id1,··· ,dn(k) the coefficient of
(
g
k

)
in the expansion of Pd1,··· ,dn(g) as

in (5).
(1) For d ≥ 0, we have Id(k) ≥ 0 when k > ⌊d3⌋
(2) For n ≥ 2, we have Id1,··· ,dn(k) = 0 when k < ⌈ |d|+2−n

3 ⌉
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Proof. The assertion of (1) follows from an inspection of the last term of (4) since
(
g
i

)
=(

g−1
i

)
+
(
g−1
i−1

)
.

The assertion of (2) follows from Lemma 4.4. □

The proof of Theorem 4.3 consists of three steps.
Step 1. We show that Theorem 4.3 holds when n = 2, namely Id1,d2(k) ≥ 0.

Step 2. Assume n ≥ 3, by Lemma 4.5, we may assume k ≥ ⌈ |d|+2−n
3 ⌉. Then apply the

recursive formula (6) to inductively prove that Id1,...,dn(k) ≥ 0.
Step 3. In Step 2, we need the property of ck−i(d1, 2n− 2|d|+ 6i− 5) ≥ 0. From

ck−i(d1, 2n− 2|d|+ 6i− 5) =

k−i∑
p=0

(−1)k−i−p

(
k − i

p

) d1∏
j=1

(6p+ 2n− 2|d|+ 6i− 5 + 2j),

denote b = 3i− 3− (d2 + · · ·+ dn) + n, we see that the factor

6p+ 2n− 2|d|+ 6i− 5 + 2j = 6p+ 3− 2(d1 + 1− j) + 2b.

Hence ck−i(d1, 2n− 2|d|+ 6i− 5) ≥ 0 is equivalent to Theorem 5.1, which will be proved in
Section 5.

5. Proof of the key inequality

As mentioned, the following inequality was used in the proof of Theorem 4.3.

Theorem 5.1. Let a, b, d be nonnegative integers satisfying 0 ≤ a ≤ d ≤ 3a+ b+ 1. Then

(7)

a∑
p=0

(−1)a−p

(
a

p

) d∏
j=1

(2b+ 3 + 6p− 2j) ≥ 0.

The above inequality has the following two equivalent formulations.

Theorem 5.2. With the same condition as in Theorem 5.1,

(8)
d∑

n=0

S(n, a)6ned−n(2b+ 1, 2b− 1, . . . , 2b+ 1− 2(d− 1)) ≥ 0,

where ek is the k-th elementary symmetric polynomial in its arguments, and S(n, k) is the
Stirling number of the second kind, which is the number of partitions of {1, . . . , n} into k
nonempty subsets.

Theorem 5.3. With the same condition as in Theorem 5.1,

(9)

a∑
p=0

(−1)a−p

(
a

p

)
(6p+ 2b+ 1)!!

3a−3p∏
j=1

(2b+ 1 + 6p− 2d+ 2j) ≥ 0.

Note that for fixed a and b the left-hand of (9) is a polynomial in d of degree 3a.

The equivalences of the above three inequalities are not difficult to see. For example, the
equivalence of (7) and (8) follow from the closed formula of Stirling numbers

S(n, a) =
(−1)a

a!

a∑
p=0

(−1)p
(
a

p

)
pn.
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5.1. Special cases. We will give a proof of Theorem 5.1; however, first we will prove two
special cases, which are needed in our inductive proof. In the following two lemmas, we prove
inequality 9 (hence inequalities 7 and 8) for d = 3a+ b+ 1 and d = 3a+ b.

Lemma 5.4. Let a, b be nonnegative integers and d = 3a+ b+ 1, then

(10)
a∑

p=0

(−1)a−p

(
a

p

)
(6p+ 2b+ 1)!!

3a−3p∏
j=1

(2b+ 1 + 6p− 2d+ 2j) ≥ 0.

Proof. (10) is equivalent to

a∑
p=0

(−1)a−p

(
a

p

)
(6p+ 2b+ 1)!!

3a−3p∏
j=1

(6p− 6a− 1 + 2j) ≥ 0

a∑
p=0

(−1)a−p

(
a

p

)
(6p+ 2b+ 1)!!(−1) · (−3) · · · (6p− 6a+ 1) ≥ 0

a∑
p=0

(−1)4a−4p

(
a

p

)
(6p+ 2b+ 1)!!(6a− 6p− 1)!! ≥ 0

a∑
p=0

(
a

p

)
(6p+ 2b+ 1)!!(6a− 6p− 1)!! ≥ 0

The first step is because the product term (6p− 6a− 1 + 2j) is negative at j = 3a− 3p, and
thus a negative factor can be extracted from all terms in the product; the factor (−1)3a−3p

combines with (−1)a−p to ensure nonnegativity. □

Lemma 5.5.

(11) (6a+ 2b+ 1)!!−
a−1∑
p=0

(
a

p

)
(6p+ 2b+ 1)!!(6a− 6p− 3)!! ≥ 0

where a, b are nonnegative integers.

Proof. For n ≥ 0, we have the well-known identity

(2n+ 1)!! =
2n+1

√
π

Γ(n+
3

2
).

Hence

(6a+ 2b+ 1)!! =
23a+b+1

√
π

Γ(3a+ b+
3

2
)

(6p+ 2b+ 1)!!(6a− 6p− 3)!! =
23a+b

π
Γ(3p+ b+

3

2
)Γ(3a− 3p− 1

2
)

And by

Γ(u)Γ(v) =

∫ ∞

0

∫ ∞

0
xu−1yv−1e−(x+y)dxdy,

we can rewrite the summation in (11) as follows:

S :=

a−1∑
p=0

(
a

p

)
(6p+ 2b+ 1)!!(6a− 6p− 3)!!
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=
a−1∑
p=0

(
a

p

)
23a+b

π
Γ(3p+ b+

3

2
)Γ(3a− 3p− 1

2
)

=
a−1∑
p=0

(
a

p

)
23a+b

π

∫ ∞

0

∫ ∞

0
x3p+b+ 1

2 y3a−3p− 3
2 e−(x+y)dxdy

=
23a+b

π

∫ ∞

0

∫ ∞

0
xb+

1
2 y−

3
2 e−(x+y)(

a−1∑
p=0

(
a

p

)
x3py3(a−p))dxdy

=
23a+b

π

∫ ∞

0

∫ ∞

0
xb+

1
2 y−

3
2 e−(x+y)((x3 + y3)a − x3a)dxdy

The last step follows from the binomial identity (x3 + y3)a =
∑a

p=0

(
a
p

)
x3py3(a−p).

Since x3 + y3 ≤ (x+ y)3 holds for nonnegative x, y, we see that

(x3 + y3)a − x3a ≤ (x+ y)3a − x3a.

Therefore,

S ≤ 23a+b

π

∫ ∞

0

∫ ∞

0
xb+

1
2 y−

3
2 e−(x+y)((x+ y)3a − x3a)dxdy.

We perform a change of variables: let t = x+ y, u =
x

x+ y
, then the Jacobian of this change

is t. Then we have

(12) S ≤ 23a+b

π

∫ ∞

0
e−tt3a+bdt

∫ 1

0
ub+

1
2 (1− u)−

3
2 (1− u3a)du.

By the definition of the beta function and its relationship with the gamma function, we
write the inner integral on the right-hand side of (12) as∫ 1

0
ub+

1
2 (1− u)−

3
2 (1− u3a)du = B(b+

3

2
,−1

2
)−B(3a+ b+

3

2
,−1

2
)

= 2
√
π(

Γ(3a+ b+ 3
2)

Γ(3a+ b+ 1)
−

Γ(b+ 3
2)

Γ(b+ 1)
).

Now, we convert the outer integral of (12)
∫∞
0 e−tt3a+bdt = Γ(3a + b + 1); thus, (12) is

equivalent to

S ≤ 23a+b+1

√
π

Γ(3a+ b+ 1) · (
Γ(3a+ b+ 3

2)

Γ(3a+ b+ 1)
−

Γ(b+ 3
2)

Γ(b+ 1)
)

≤ 23a+b+1

√
π

Γ(3a+ b+
3

2
)− 23a+b+1

√
π

Γ(3a+ b+ 1)
Γ(b+ 3

2)

Γ(b+ 1)
(13)

Rearrange (13)

23a+b+1

√
π

Γ(3a+ b+
3

2
)− S ≥ 23a+b+1

√
π

Γ(3a+ b+ 1)
Γ(b+ 3

2)

Γ(b+ 1)
.

By the relationship between double factorials and the gamma function,

23a+b+1

√
π

Γ(3a+ b+
3

2
) = (6a+ 2b+ 1)!!
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After substitution, our proof is complete.

(6a+ 2b+ 1)!!− S ≥ 23a+b+1

√
π

Γ(3a+ b+ 1)
Γ(b+ 3

2)

Γ(b+ 1)

≥ 0 for nonnegative a, b

□

Remark 5.6. The inequality (9) at d = 3a+ b is equivalent to (11). Substitute 3a+ b for d,
so the left-hand side of (9) is

a∑
p=0

(−1)a−p

(
a

p

)
(6p+ 2b+ 1)!!

3a−3p∏
j=1

(2b+ 1 + 6p− 2d+ 2j)

=
a∑

p=0

(−1)a−p

(
a

p

)
(6p+ 2b+ 1)!! · 1 · (−1) · · · (2b+ 3 + 6p− 2(3a+ b))

=(6a+ 2b+ 1)!!−
a−1∑
p=0

(
a

p

)
(6p+ 2b+ 1)!!(6a− 6p− 3)!!

5.2. Proof of Theorem 5.1. We define forward differences, as they will be used in the proof
of Theorem 5.1.

Definition 5.7.

(∆af)(x) :=
a∑

k=0

(−1)a−k

(
a

k

)
f(x+ k)

is the a-th order forward difference of f . The first order forward difference, or simply, forward
difference, is then

(∆f)(x) = f(x+ 1)− f(x).

We introduce the well-known Leibniz rule for forward differences evaluated at x = 0:

Lemma 5.8. Let a ≥ 0,

∆a(uv)(x)

∣∣∣∣
x=0

=

a∑
i=0

(
a

i

)
(∆iu)(x+ a− i) · (∆a−iv)(x)

∣∣∣∣
x=0

=

a∑
i=0

(
a

i

)
(∆iu)(a− i) · (∆a−iv)(0)

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. (7) is equivalent to the expression

(14) (−1)a · 2d ·
a∑

k=0

(−1)k
(
a

k

) d−1∏
r=0

(b+
3

2
+ 3k − d+ r) ≥ 0.

Denote

pd(k) :=
d−1∏
r=0

(b+
3

2
+ 3k − d+ r)
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Then by the well-known identity
a∑

k=0

(−1)k
(
a

k

)
f(k) = (−1)a(∆af)(0)

where ∆af is the a-th order forward difference of f . We can rewrite (14) as:

(15) 2d(∆apd)(0) ≥ 0.

To prove this, proceed by separating pd(k):

pd(k) =
d−1∏
r=0

(b+
3

2
+ 3k − d+ r) = pd−1(k) · (b+

3

2
+ 3k − d+ (d− 1))

We denote qd(k) := (b+ 3
2 + 3k − d+ (d− 1)).

Setting u = qd, v = pd−1 and plugging into the identity Lemma 5.8, we have

(16) ∆a(qdpd−1)(0) =
a∑

i=0

(
a

i

)
(∆iqd)(a− i) · (∆a−ipd−1)(0).

Since qd(k) = 3k+b+ 1
2 is a linear function, ∆qd(k) = qd(k+1)−qd(k) = ∆qd ≡ 3 is constant

and thus ∆iqd ≡ 0 for i > 1. We define a recursion function with the only two surviving
summands (16):

(17) Fd(a) := (∆apd)(0) = (∆aqdpd−1)(0) = qd(a) · Fd−1(a) + 3a · Fd−1(a− 1)

Now we prove (14) by induction as follows: first, we note that the LHS of (8) equals zero
when d < a; since the LHS of (7) is the LHS of (8) multiplied by a!, Fd(a) ≡ 0 when d < a.
Also, qd(a) and 3a are both nonnegative for 0 ≤ d ≤ 3a+ b+ 1. Next, we see that the base
cases F0(0) = 1, F1(1) = ∆p1(0) = p1(1)− p1(0) = 3 are positive.

Assume Fd−1(a) and Fd−1(a−1) are nonnegative for their corresponding bounds (d−1) ≤
3a+b+1 and (d−1) ≤ 3(a−1)+b+1. We examine Fd(a) with bounds d ≤ 3a+b+1. While
the bound for Fd−1(a) is automatically satisfied, Fd−1(a − 1) is not necessarily nonnegative
for d = 3a+ b and d = 3a+ b+ 1; however, we proved those special cases previously.

Thus, by induction, Fd(a) = (∆apd)(0) ≥ 0. The theorem is proved. □

6. Eynard-Orantin topological recursion

Definition 6.1. We call the following generating function

F (x1, . . . , xn) =

∞∑
g=0

Fg(x1, . . . , xn) =

∞∑
g=0

∑
∑

dj=3g−3+n

⟨τd1 · · · τdn⟩g
n∏

j=1

x
dj
j

the n-point function.

Consider the following normalized n-point function

G(x1, . . . , xn) = exp

(
−
∑n

j=1 x
3
j

24

)
F (x1, . . . , xn).

In particular, we have Zagier’s formula for 3-point function which we learned from Faber.

G(x, y, z) =
∑
r,s≥0

r!Sr(x, y, z)

4r(2r + 1)!! · 2
· ∆s

8s(r + s+ 1)!
,
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where Sr(x, y, z) and ∆ are the homogeneous symmetric polynomials defined by

Sr(x, y, z) =
(xy)r(x+ y)r+1 + (yz)r(y + z)r+1 + (zx)r(z + x)r+1

x+ y + z
∈ Z[x, y, z],

∆(x, y, z) = (x+ y)(y + z)(z + x) =
(x+ y + z)3

3
− x3 + y3 + z3

3
.

In Step 1 of the proof of Theorem 4.3, we need to prove that Ib,c(k) ≥ 0 for any b, c ≥ 0.
On the other hand, it is not difficult to get that

Ib,c(k) = 24kk!(2b+ 1)!!(2c+ 1)!!× [x3k−b−cybzc]

(
exp

(
y3 + z3

24

)
G(x, y, z)

)
,

where [x3k−b−cybzc] means taking the corresponding coefficients.
Therefore it suffices to show [xaybzc]Gn(x, y, z) ≥ 0 where Gn(x, y, z) is the normalized

3-point function as in Zagier’s formula.
We are going to give a proof using the Eynard-Orantin theory [6] which is a powerful and

unifying tool for enumerative geometry.
Fix n ≥ 0 and a, b, c ≥ 0 with a+ b+ c = 3n. Define generating series

J(u) =
∑
k≥0

Jku
k, G(u) =

∑
k≥0

Gku
k, J(u) = e

x3+y3+z3

24
uG(u),

and use the normalization

[xaybzc] Jk = ⟨τaτbτc⟩ (if a+ b+ c = 3k; else 0).

From Cauchy product,

(18) [xaybzc]Gn =
∑

i,j,k≥0

(−1)i+j+k

24 i+j+k i! j! k!

〈
τa−3i τb−3j τc−3k

〉
,

with the convention ⟨τm · · · ⟩ = 0 if any index is negative.

EO moment lemma. Let ∆ := {(s1, s2, s3) ∈ [0, 1]3 : s1 + s2 + s3 ≤ 1}. There exists a
finite positive Borel measure µn;a,b,c on ∆ such that, for all i, j, k ≥ 0,

(19)
〈
τa−3i τb−3j τc−3k

〉
=

∫
∆
s i1s

j
2 s

k
3 dµn;a,b,c(s1, s2, s3).

Proof of the lemma (via Airy EO in one page). Work on the Airy curve x = 1
2z

2, y = z
with kernel

K(z0, z) =
dz0
2z2

( 1

z0 + z
− 1

z0 − z

)
,

and EO recursion

Wg,n+1(z0, zS) = Res
z→0

K(z0, z)
[
Wg−1,n+2(z,−z, zS)+

∑
g1+g2=g
S=I⊔J

Wg1,|I|+1(z, zI)Wg2,|J |+1(−z, zJ)
]
.

The coefficient dictionary is

Wg,3(z1, z2, z3) =
∑

a+b+c=3g

⟨τaτbτc⟩
3∏

r=1

(2dr − 1)!!

z2dr+2
r

dzr.

Apply the inverse Laplace transform variablewise:

L−1
z→L

( dz

z2m+2

)
=

L2m+1

(2m+ 1)!
dL, L−1

z→L

(
(z + w)−m−1

)
=
Lm

m!
e−wL dL.
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Each EO term becomes an integral over parameters with nonnegative polynomial kernels:

(1) Pairing node ⇒ parameter s ∈ [0, 1] and Beta kernel

B(α,β)(s) :=
(α+ β + 1)!

α!β!
sα(1− s)β, α = 1, β = 2d+ 1.

It replaces the first length by L′
1= sL1 + (1− s)Lj .

(2) Two-leg node ⇒ parameters (s, t) with s, t ≥ 0, s+t ≤ 1 and triangle-Beta kernel

C(α,β,γ)(s, t) :=
(α+ β + γ + 2)!

α!β! γ!
sαtβ(1− s− t)γ , α = 2d1+1, β = 2d2+1, γ = 1,

replacing the first length by L′
1 = (s+ t)L1.

Unroll the recursion into finitely many trees T with parameter polytopes ΩT (products
of [0, 1] and {s, t ≥ 0, s+t ≤ 1}). Compose the affine updates to obtain πT : ΩT → ∆,
θ 7→ (s1(θ), s2(θ), s3(θ)). Let KT (θ) be the product of the corresponding Beta polynomials,

and let C
(a,b,c)
T ≥ 0 be the (finite) sum of multinomial/normalization/splitting constants

selecting the root power L2a
1 L

2b
2 L

2c
3 . Define

µn;a,b,c :=
∑
T

C
(a,b,c)
T (πT )#

(
KT (θ) dθ

)
.

Then coefficient extraction shows that each drop a 7→ a − 3 (resp. b 7→ b − 3, c 7→ c − 3)

multiplies the integrand by s1(θ) (resp. s2(θ), s3(θ)), while KT and C
(a,b,c)
T are independent

of (i, j, k) and nonnegative. This yields (19). □

Conclusion. Insert (19) into (18) and sum the (separate) exponential series:

[xaybzc]Gn =

∫
∆

(∑
i≥0

(−s1/24)i

i!

)(∑
j≥0

(−s2/24)j

j!

)(∑
k≥0

(−s3/24)k

k!

)
dµn;a,b,c

=

∫
∆
e−(s1+s2+s3)/24 dµn;a,b,c.

The integrand and measure are nonnegative, hence [xaybzc]Gn ≥ 0.

7. Examples

Following the method used by Afandi [1], we give some examples of Ehrhart polynomials
LP(g) and their explicit partial polytopal complexes. We follow the definition of triangula-
tions and introduce a theorem involving them as given in [1].

Definition 7.1. Let K be a partial polytopal complex of dimension d. A triangulation
T of K is a disjoint union of open simplices whose support is K. The triangulation T
is unimodular if the closure of each open simplex in T is lattice equivalent to the stan-
dard simplex. The f∗-vector of T , (f∗0 , . . . f

∗
d ), has a special meaning. In particular, f∗i =

#{i-dimensional open simplices in T }.

Theorem 7.2. Let K be a partial polytopal complex of dimension d and let T be a unimodular
triangulation of K. Then

LK(g) =
d∑

i=0

f∗i

(
g − 1

i

)
where (f∗0 , . . . , f

∗
d ) is the f∗-vector of T .



INTERSECTION NUMBERS AND THE COUNTING OF LATTICE POINTS 17

The polytopes we give as examples will be inside-out polytopes, they are defined as the
following:

Definition 7.3. An inside-out polytope is any set of the form

P \

( ⋃
H∈H

H

)
where P ⊆ Rd is a full dimensional integral d-polytope, and letH is a hyperplane arrangement,
which is, a finite collection of hyperplanes in Rd.

Note that although we will give an example of a polytope that matches its corresponding
integer-valued polynomial perfectly, each polynomial is not exclusively related to one poly-
tope. This will be illustrated through a secondary (and reduced) polytope presented in each
example; the Ehrhart polynomial of this polytope will differ from that of the primary example
by a factor.

7.1. Polynomial P1,0(g − 1). We show that the integer-valued polynomial

P1,0(g − 1) = 6g − 6 = 6

(
g − 1

1

)
corresponds to the Ehrhart polynomial

LP1,0(g) = |gP1,0 ∩ Z|.
Define P1,0 as the inside-out polytope [−3, 3] \ {±3,±2,±1, 0}, shown below.

P1,0 =

−3 −2 −1 0 1 2 3

P1,0 has unimodular triangulation T1,0:
T1,0 =

−3 −2 −1 0 1 2 3

We see that T1,0 has f∗-vector (0, 6), so by Theorem 7.2,

LP1,0(g) = 6

(
g − 1

1

)
= P1,0(g − 1).

Alternatively, we can consider the reduced inside-out polytope P̃1,0 := [0, 1]\{0, 1} and its

unimodular triangulation T̃1,0:

P̃1,0 =

0 1

T̃1,0 =
0 1

Since T̃1,0 has (f∗0 , f
∗
1 ) = (0, 1), by Theorem 7.2,

LP̃1,0
(g) = 1

(
g − 1

1

)
.

Hence we have
P1,0(g − 1) = 6 · LP̃1,0

(g) = 6|gP̃1,0 ∩ Z|.
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7.2. Polynomial P1,1(g − 1). Now we show that

P1,1(g − 1) = 36(g − 1)2 − 18(g − 1) = 36g2 − 90g + 54 = 18

(
g − 1

1

)
+ 72

(
g − 1

2

)
corresponds to the Ehrhart polynomial

LP1,1(g) = |gP1,1 ∩ Z2|,

where P1,1 represents the inside-out polytope ([−3, 3]× [−3, 3]) \H, and H is the hyperplane
arrangement

H := {x2 = 0, x2 = 1, x2 = 2, x2 = 3, x2 = x1,

x1 = 0, x1 = ±1, x1 = ±2, x1 = ±3,

x2 = x1 ± 1, x2 = x1 ± 2, x2 = x1 ± 3, x2 = x1 ± 4, x2 = x1 ± 5}.

A visualization of P1,1 is shown below.

(3, 3)(−3, 3)

(3,−3)(−3,−3)

P1,1 admits the following unimodular triangulation:

(3, 3)(−3, 3)

(3,−3)(−3,−3)
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The f∗-vector of the above triangulation is (0, 18, 72). Thus, by Theorem 7.2,

LP1,1(g) = 0

(
g − 1

0

)
+ 18

(
g − 1

1

)
+ 72

(
g − 1

2

)
= P1,1(g − 1).

On the other hand, consider the simplified inside-out polytope P̃1,1 = ([0, 1]× [0, 2]) \ H′,

where H′ = {x2 = 1, x2 = 2, x1 = 0, x2 = x1, x2 = x1 + 1}. Below is a visualization of P̃1,1.

(0, 2)

(0, 0)

(1, 2)

(1, 0)

P̃1,1 admits the unimodular triangulation with f∗-vector (0, 1, 4).

(0, 2)

(0, 0)

(1, 2)

(1, 0)

By Theorem 7.2, LP̃1,1
(g) = 0

(
g−1
0

)
+ 1
(
g−1
1

)
+ 4
(
g−1
2

)
and we have

P1,1(g − 1) = 18 · LP̃1,1
(g) = 18|gP̃1,1 ∩ Z2|.

7.3. Polynomial P2,0(g − 1). Finally, we show that P2,0(g − 1) = 30
(
g−1
1

)
+ 72

(
g−1
2

)
corre-

sponds to the Ehrhart polynomial

LP2,0(g) = |gP2,0 ∩ Z2|,
where P2,0 is the inside-out polytope ([−3, 3] × [−3, 3]) \ H2, and H2 is the hyperplane ar-
rangement

H2 := {x2 = 2, x2 = 3, x2 = x1, x1 = 0, x1 = ±1, x1 = ±2, x1 = ±3,

x2 = x1 ± 1, x2 = x1 ± 2, x2 = x1 ± 3, x2 = x1 ± 4, x2 = x1 ± 5}.
Here is a visualization of P2,0:

(3, 3)(−3, 3)

(3,−3)(−3,−3)
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P2,0 admits the following unimodular triangulation T2,0.

(3, 3)(−3, 3)

(3,−3)(−3,−3)

T2,0 has f∗-vector (0, 30, 72), and by Theorem 7.2, we see that

LP2,0(g) = 0

(
g − 1

0

)
+ 30

(
g − 1

1

)
+ 72

(
g − 1

2

)
= P2,0(g − 1).

Alternatively, consider the inside-out polytope P̃2,0 := ([0, 1]× [0, 6]) \H′
2 where H′

2 is the
hyperplane arrangement

H′
2 := {x1 = 0, x1 = 1, x2 = 5, x2 = 6, x2 = x1, x2 = x1+1, x2 = x1+2, x2 = x1+3, x2 = x1+4, x2 = x1+5}.

Below is a visualization of P̃2,0 and its unimodular triangulation T̃2,0:

(0, 6)

(0, 0)

(1, 6)

(1, 0)

P̃2,0 =

(0, 6)

(0, 0)

(1, 6)

(1, 0)

T̃2,0 =

T̃2,0 has f∗-vector (0, 5, 12). Thus, by Theorem 7.2, LP̃2,0
(g) = 0

(
g−1
0

)
+ 5
(
g−1
1

)
+ 12

(
g−1
2

)
.

Hence,

P2,0(g − 1) = 6 · LP̃2,0
(g) = 6|gP̃2,0 ∩ Z2|.
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8. Observations when proving Theorem 5.1

When checking Theorem 5.1 computationally, we found that for any a, b values tested, the
left-hand side of (7), i.e. the expression

(20)
a∑

p=0

(−1)a−p

(
a

p

) d∏
j=1

(2b+ 3 + 6p− 2j),

becomes drastically negative when we set d = 3a + b + 2. Below is a table comparing the
value of the above expression when d = 3a+ b+ 2 against its value when d = 3a+ b+ 1, for
certain a, b.

a b (20) when d = 3a+ b+ 1 (20) when d = 3a+ b+ 2
1 4 2041200 −2126250
2 3 659874600 −697296600
3 5 6205946712966000 −6310673040672000
4 6 8212934528414231616000 −8290585205214071760000

Since the LHS of (9),

(21)
a∑

p=0

(−1)a−p

(
a

p

)
(6p+ 2b+ 1)!!

3a−3p∏
j=1

(2b+ 1 + 6p− 2d+ 2j),

is a polynomial in d, it is possible to visualize it as a function of d for fixed a, b in a graph.
For instance, below is the graph of the polynomial in d when a = b = 5:

Figure 1. (21) when a = b = 5, drawn with Maple

Although it may seem like it, the derivative of the above function is not always positive;
at around d = 19 to d = 20, the derivative briefly drops below zero. Here is a graph of the
derivative of (21) when a = b = 5.

Remarkably, the minimum value of the first derivative of (21) stays around two orders of
magnitude less than the maximum value, independent of a, b. We denote by lx,y the length of
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Figure 2. First derivative of (21) when a = b = 5, drawn with Maple

the interval where the derivative of (21) (when a = x, b = y) is negative. As a, b increase, la,b
shrinks. For example, l5,5 is approximately equal to 1.15620317, but when l6,6 ≈ 1.15552147.
As a, b become large, la,b seems to exhibit asymptotic behavior: l50,50 ≈ 1.1547080, whereas
l100,100 ≈ 1.1547024 – a significantly smaller decrease in length than before despite the large
difference in values of a, b.



INTERSECTION NUMBERS AND THE COUNTING OF LATTICE POINTS 23

References

[1] A. Afandi, An Ehrhart theory for tautological intersection numbers, Comb. Theory, 4 (2) (2024), #6.
[2] E. Arbarello and M. Cornalba, Combinatorial and algebro-geometric cohomology classes on the moduli

spaces of curves, J. Alg. Geom. 5 (1996), 705–709.
[3] M. Beck and S. Robins, Computing the Continuous Discretely: Integer-point Enumeration in Polyhedra,

Undergraduate Texts in Mathematics, Springer New York, 2015.
[4] R. Dijkgraaf, H. Verlinde, and E. Verlinde, Topological strings in d < 1, Nuclear Phys. B 352 (1991),

59–86.
[5] T. Ekedahl, S. Lando, M. Shapiro, and A. Vainshtein, Hurwitz numbers and intersections on moduli

spaces of curves, Invent. Math. 146 (2001), 297–327.
[6] B. Eynard and N. Orantin, Invariants of algebraic curves and topological expansion, Commun. Number

Theory Phys. 1, 347–452 (2007).
[7] C. Faber, Algorithms for computing intersection numbers on moduli spaces of curves, with an application

to the class of the locus of Jacobians, in New Trends in Algebraic Geometry (K. Hulek, F. Catanese, C.
Peters and M. Reid, eds.), 93–109, Cambridge University Press, 1999.

[8] A. Givental, Equivariant Gromov-Witten invariants, Internat. Math. Res. Notices (1996), 613–663.
[9] J. Guo, P. Norbury, D. Yang and D. Zagier, Combinatorics and large genus asymptotics of the Brézin–
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